Benchmark solutions of the stabilized computations of flows of fluids governed by the Rolie-Poly constitutive model

Author:

Abuga J G,Chinyoka TORCID

Abstract

Abstract Recent studies demonstrate that flow induced non-uniformities of concentration can trigger shear banding in the flow of certain viscoelastic fluids. These studies show that the driving mechanisms for such shear banding are related to the coupling of the polymer stresses to an inhomogeneous concentration profile. The Rolie-Poly (RP) viscoelastic constitutive model has been used in such studies since it has been comprehensively subjected to extensive experimental validation with regards to shear banding and has the demonstrated ability to accurately express the rheology of polymer solutions for a wide range of strain rates. The primary aim of this work is to develop an efficient computational methodology that could be used to accurately simulate the flow of complex fluids governed by the Rolie-Poly constitutive equation. The development of such a computational platform is crucially important for the purposes of our follow up studies on the computational analysis of shear banding phenomena by coupling polymer stress with inhomogeneous concentration profile. Our numerical algorithms will be based on the finite volume method (FVM) and will be implemented on the open source software package OpenFOAM®. In this paper, we will present both validation results as well as new benchmark results from our FVM based OpenFOAM® numerical solver for flow of fluids governed by the Rolie-Poly constitutive model. We use two well-known benchmark problems, the lid-driven cavity flow and the 4:1 planar contraction flow problems. In order to stabilize the numerical algorithm at high Weissenberg numbers, we employ either of two stabilization techniques; the Discrete Elastic Viscous Stress Splitting (DEVSS) technique as well as the Log-Conformation Reformulation (LCR) methodology. Validation of our results is done by comparing our (stabilized) numerical results, against data from existing literature. The numerical results obtained for the contraction flow using the LCR stabilization approach are in good agreement with the existing literature for a wider range of Weissenberg numbers. The DEVSS method shows a good agreement only for lower Weissenberg numbers. For the lid-driven cavity flow, good agreement with the existing literature is observed for low Weissenberg numbers using either of the two stabilization techniques.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference31 articles.

1. A study of shear banding in polymer solutions;Cromer;Phys. Fluids,2014

2. Fluid mechanics in the driven cavity;Shankar;Annual Review Fluid Mechanics,2000

3. Modeling of viscoelastic lid driven cavity flow using the finite element simulations;Grillet;Journal of Non-Newtonian Fluid Mechanic,1999

4. Lid-driven cavity flow of viscoelastic fluids;Sousa;J. Non-Newtonian Fluid Mech.,2016

5. Numerical simulation of viscoelastic two-phase flows using OpenFOAM;Habla;Chem. Eng. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3