Computational Analysis of Shear Banding in Simple Shear Flow of Viscoelastic Fluid-Based Nanofluids Subject to Exothermic Reactions

Author:

Khan Idrees,Chinyoka TiriORCID,Gill Andrew

Abstract

We investigated the shear banding phenomena in the non-isothermal simple-shear flow of a viscoelastic-fluid-based nanofluid (VFBN) subject to exothermic reactions. The polymeric (viscoelastic) behavior of the VFBN was modeled via the Giesekus constitutive equation, with appropriate adjustments to incorporate both the non-isothermal and nanoparticle effects. Nahme-type laws were employed to describe the temperature dependence of the VFBN viscosities and relaxation times. The Arrhenius theory was used for the modeling and incorporation of exothermic reactions. The VFBN was modeled as a single-phase homogeneous-mixture and, hence, the effects of the nanoparticles were based on the volume fraction parameter. Efficient numerical schemes based on semi-implicit finite-difference-methods were employed in MATLAB for the computational solution of the governing systems of partial differential equations. The fundamental fluid-dynamical and thermodynamical phenomena, such as shear banding, thermal runaway, and heat transfer rate (HTR) enhancement, were explored under relevant conditions. Important novel results of industrial significance were observed and demonstrated. Firstly, under shear banding conditions of the Giesekus-type VFBN model, we observed remarkable HTR and Therm-C enhancement in the VFBN as compared to, say, NFBN. Specifically, the results demonstrate that the VFBN are less susceptible to thermal runaway than are NFBN. Additionally, the results illustrate that the reduced susceptibility of the Giesekus-type VFBN to the thermal runaway phenomena is further enhanced under shear banding conditions, in particular when the nanofluid becomes increasingly polymeric. Increased polymer viscosity is used as the most direct proxy for measuring the increase in the polymeric nature of the fluid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3