Response of shear in bulk orientations of charged DNA rods: Taylor- and gradient-banding

Author:

Kang KyongokORCID

Abstract

Abstract Shear-induced instabilities leading to various kinds of inhomogeneous flow profiles play an important role in the processing of complex fluids, ranging from polymeric materials to various types of biological systems. In previously studied systems, either Taylor banding, or gradient banding, or fracture is observed. In the present work we study a system for which all instabilities occur in orientation textures (OTs), and where Taylor banding occurs simultaneously with gradient banding. The system here consists of crowded suspensions of long and thin DNA-based rods (at a low ionic strength of 0.16 mM salt), where the applied shear rate is systematically varied, for concentrations well below and above the glass-transition concentration (12.4 mg ml−1). To simultaneously measure the velocity profile along the gradient direction, in fracture and gradient banding, the optical cell is placed in a specially designed heterodyne light scattering set up, where the scattering volume can be scanned across the cell gap. The results confirm that Taylor bands and gradient banding occur in the concentration of DNA rods and applied shear-rates (35–80 s−1). Taylor bands clearly show the flow access in vorticity-direction, while the gradient banding is rearranged as thick rolling flows of OTs, at the middle shear-rate (50 s−1). The observations can be then useful to facilitate other biological complex fluids and the glass-forming liquids.

Funder

Forschungszentrum Juelich, Central Library

Forschungszentrum Juelich Central Library

Helmholtz Alliance, Forschungszentrum Juelich

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference40 articles.

1. Discontinuity in the Flow Curve of Polyethylene;Bagley;J. Appl. Phys.,1958

2. A molecular approach to the spurt effect in polymer melt flow;McLeish;J. Polym. Sci: Part B: Polymer Phys,1986

3. Shear banding of complex fluids;Divoux;Ann. Rev. of Flu. Mech.,2016

4. A constitutive relation describing the shear-banding transition;Dhont;Phys. Rev. E,1999

5. Shear-banding instabilities;Dhont;Korea-Australia Rheology Journal,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3