Underlying mechanism of shear-banding in soft glasses of charged colloidal rods with orientational domains

Author:

Parisi D.1ORCID,Vlassopoulos D.1ORCID,Kriegs H.2ORCID,Dhont J. K. G.2,Kang K.2ORCID

Affiliation:

1. Foundation for Research and Technology – Hellas (FORTH), Institute of Electronic Structure and Laser, GR-70013 Crete, Greece and Department of Materials Science and Technology, University of Crete, GR-71003 Crete, Greece

2. IBI-4: Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich 52428, Germany

Abstract

Soft glasses of colloidal rods ( fd-virus particles) with orientational domains were recently shown to exhibit inhomogeneous flow profiles [Dhont et al., Phys. Rev. Fluids 2, 043301 (2017)]: fracture and accompanied plug flow at small shear rates, which transits to gradient shear-banding on increasing the shear rate, while a uniform flow profile develops at sufficiently high shear rates. These flow profiles coexist with Taylor-vorticity bands. The texture of such glasses under flow conditions consists of domains with varying orientations. The observed gradient shear-banding was solely attributed to the strong shear thinning behavior of the material inside the domains (henceforth abbreviated as domain-interior), without considering the texture stress that is due to interactions between the glassy domains. Here, we present new experiments on the shear-banding transition to assess the role played by the texture stress in comparison to the domain-interior stress. For a large concentration, well into the glassy state, it is found that both texture stress and domain-interior stress contribute significantly to the gradient shear-banding transition in the shear-rate region where it occurs. On the other hand, for a small concentration close to the glass-transition concentration, the domains are shown to coalesce within the shear-rate range where gradient shear-banding is observed. As a result, the texture stress diminishes and the domain-interior stress increases upon coalescence, leading to a stress plateau. Thus, a subtle interplay exists between the stresses arising from the structural order on two widely separated length scales from interactions between domains and from the rod-rod interactions within the domain-interior for both concentrations.

Funder

Central Library, Forschungszentrum Juelich

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3