Hubbard-corrected oxide formation enthalpies without adjustable parameters

Author:

Voss JORCID

Abstract

Abstract A density functional theory (DFT) approach to computing transition metal oxide heat of formation without adjustable parameters is presented. Different degrees of d-electron localization in oxides are treated within the DFT+U approach with site-dependent, first-principles Hubbard U-parameters obtained from linear response theory, and delocalized states in the metallic phases are treated without Hubbard corrections. Comparison of relative stabilities of these differently treated phases is enabled by a local d-electron density matrix-dependent model, which was found by genetic programming against experimental reference formation enthalpies. This mathematically simple model does not explicitly depend on the Hubbard-corrected ionic species and is shown to reproduce the heats of formation of the Mott insulators Ca2RuO4 and Y2Ru2O7 within ∼3% of experimental results, where the experimental training data did not contain Ru oxides. This newly developed method thus absolves from the need for element-specific corrections fitted to experiments in existing Hubbard-corrected approaches to the prediction of reaction energies of transition metal oxides and metals. The absence of fitting parameters opens up here the possibility to predict relative thermodynamic stabilities and reaction energies involving d-states of varying degree of localization at transition metal oxide interfaces and defects, where site-dependent U-parameters will be particularly important and devising a fitting scheme against experimental data with predictive power would be exceedingly difficult.

Funder

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3