Interpretable Machine Learning Models for Practical Antimonate Electrocatalyst Performance

Author:

Deo Shyam12,Kreider Melissa E.12ORCID,Kamat Gaurav12ORCID,Hubert McKenzie12ORCID,Zamora Zeledón José A.12ORCID,Wei Lingze12ORCID,Matthews Jesse12ORCID,Keyes Nathaniel12,Singh Ishaan12,Jaramillo Thomas F.12ORCID,Abild‐Pedersen Frank2ORCID,Burke Stevens Michaela2ORCID,Winther Kirsten2ORCID,Voss Johannes2ORCID

Affiliation:

1. Department of Chemical Engineering Stanford University Stanford CA 94305 United States

2. SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park CA 94025 United States

Abstract

AbstractComputationally predicting the performance of catalysts under reaction conditions is a challenging task due to the complexity of catalytic surfaces and their evolution in situ, different reaction paths, and the presence of solid‐liquid interfaces in the case of electrochemistry. We demonstrate here how relatively simple machine learning models can be found that enable prediction of experimentally observed onset potentials. Inputs to our model are comprised of data from the oxygen reduction reaction on non‐precious transition‐metal antimony oxide nanoparticulate catalysts with a combination of experimental conditions and computationally affordable bulk atomic and electronic structural descriptors from density functional theory simulations. From human‐interpretable genetic programming models, we identify key experimental descriptors and key supplemental bulk electronic and atomic structural descriptors that govern trends in onset potentials for these oxides and deduce how these descriptors should be tuned to increase onset potentials. We finally validate these machine learning predictions by experimentally confirming that scandium as a dopant in nickel antimony oxide leads to a desired onset potential increase. Macroscopic experimental factors are found to be crucially important descriptors to be considered for models of catalytic performance, highlighting the important role machine learning can play here even in the presence of small datasets.

Funder

Basic Energy Sciences

National Energy Research Scientific Computing Center

Office of Science

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3