Remote teaching data-driven physical modeling through a COVID-19 open-ended data challenge

Author:

Cosentino Lagomarsino MarcoORCID,Pacifico Guglielmo,Firmano Valerio,Bella Edoardo,Benzoni Pietro,Grilli Jacopo,Bassetti Federico,Capuani Fabrizio,Cicuta PietroORCID,Gherardi Marco

Abstract

Abstract Physics can be seen as a conceptual approach to scientific problems, a method for discovery, but teaching this aspect of our discipline can be a challenge. We report on a first-time remote teaching experience for a computational physics third-year physics laboratory class taught in the first part of the 2020 COVID-19 pandemic (March–May 2020). To convey a ‘physics of data’ approach to data analysis and data-driven physical modeling we used interdisciplinary data sources, with an openended ‘COVID-19 data challenge’ project as the core of the course. COVID-19 epidemiological data provided an ideal setting for motivating the students to deal with complex problems, where there is no unique or preconceived solution. Our results indicate that such problems yield qualitatively different improvements compared to close-ended projects, as well as point to critical aspects in using these problems as a teaching strategy. By breaking the students’ expectations of unidirectionality, remote teaching provided unexpected opportunities to promote active work and active learning.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3