Abstract
Abstract
Engaging students with well-designed multiple-choice questions during class and asking them to discuss their answers with their peers after each student has contemplated the response individually can be an effective evidence-based active-engagement pedagogy in physics courses. Moreover, validated sequences of multiple-choice questions are more likely to help students build a good knowledge structure of physics than individual multiple-choice questions on various topics. Here we discuss a framework to develop robust sequences of multiple-choice questions and then use the framework for the development, validation and implementation of a sequence of multiple-choice questions focusing on helping students learn quantum mechanics via the Stern–Gerlach experiment (SGE) that takes advantage of the guided inquiry-based learning sequences in an interactive tutorial on the same topic. The extensive research in developing and validating the multiple-choice question sequence (MQS) strives to make it effective for students with diverse prior preparation in upper-level undergraduate quantum physics courses. We discuss student performance on assessment task focusing on the SGE after traditional lecture-based instruction versus after engaging with the research-validated MQS administered as clicker questions in which students had the opportunity to discuss their responses with their peers.
Subject
General Physics and Astronomy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献