Fabrication and non-destructive characterization of through-plastic-via (TPV) in flexible hybrid electronics

Author:

Sondhi KartikORCID,Avuthu Sai Guruva ReddyORCID,Richstein Jörg,Fan Z HughORCID,Nishida ToshikazuORCID

Abstract

Abstract Flexible hybrid electronics (FHE) have been gaining interest in recent years as this technology has the potential to become a low-cost, mechanically pliable sister technology for multilayer printed circuit boards (PCBs). One of the limitations of rigid PCB is low endurance to mechanical bending, this limitation poses a threat to the efficacy for wearable applications. During bending, a substrate experiences both compressive and tensile stress. These stresses are similar in magnitude but opposite in direction. This difference in directionality creates a non-linear stress gradient in a via which impacts the structural integrity, endurance and bending reliability of a circuit during its operation. Additionally, as flexible substrates can be bent to a higher bending radius, the magnitude of maximum extrinsic stresses observed on flexible substrates could be higher than the stress observed on rigid substrates. Hence, the reliability and mechanical compliance of through-hole-plastic-vias for reliable flexible circuits need to be understood. In this study, we have developed a process to create vias on flexible substrates using a rapid commercial laser (Nd-YaG laser) to study the effects on via resistance due to three different variables—bending stresses, via diameter and via length. A novel non-destructive approach (CT-scanner) was used to scan the via structures and determine the filling for all via diameters from 50 to 450 µm and via lengths of 7, 10 mils. Two different configurations of vias were used to measure and analyze the effect of mechanical cycling on via resistance and via filling. This demonstration of electrical and mechanical testing of vias and novel methodologies for via filling, and via electrical resistance can contribute to better design and fabrication guidelines of multi-layer FHE circuits.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effect of Thermal Stress on the Reliability of all-Printed Vias on Flexible Substrates;2022 IEEE 72nd Electronic Components and Technology Conference (ECTC);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3