Predicting inkjet jetting behavior for viscoelastic inks using machine learning

Author:

Kim Seongju,Wenger Raphaël,Bürgy Olivier,Balestra GioeleORCID,Jeong UnyongORCID,Jung SungjuneORCID

Abstract

Abstract Inkjet printing offers significant potential for additive manufacturing technology. However, predicting jetting behavior is challenging because the rheological properties of functional inks commonly used in the industry are overlooked in printability maps that rely on the Ohnesorge and Weber numbers. We present a machine learning-based predictive model for jetting behavior that incorporates the Deborah number, the Ohnesorge number, and the waveform parameters. Ten viscoelastic inks have been prepared and their storage modulus and loss modulus measured, showing good agreement with those obtained by the theoretical Maxwell model. With the relaxation time of the viscoelastic ink obtained by analyzing the Maxwell model equations, the Deborah number could be calculated. We collected a large data set of jetting behaviors of each ink with various waveforms using drop watching system. Three distinct machine learning models were employed to build predictive models. After comparing the prediction accuracy of the machine learning models, we found that multilayer perceptron showed outstanding prediction accuracy. The final predictive model exhibited remarkable accuracy for an unknown ink based on waveform parameters, and the correlation between jetting behavior and ink properties was reasonable. Finally, we developed a printability map characterized by the Ohnesorge and Deborah numbers through the proposed predictive model for viscoelastic fluids and the chosen industrial printhead.

Funder

National Research Foundation of Korea

Technology Innovation Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3