A review on 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene based organic thin film transistor

Author:

Ndikumana JoelORCID,Kim Jiho,Kim Jun Young,Lee DongjinORCID,An KunsikORCID

Abstract

Abstract 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (dif-TES-ADT) is a small molecule organic semiconductor that has drawn much interest as an active channel in organic thin film transistors (OTFTs). In particular, the solubility of dif-TES-ADT in numerous solvents and amorphous polymers, its chemical stability, and its ease in processing make it a supreme candidate for high performance devices. This review summarizes the progress in material crystallization and the film formation approach, including the surface treatment of Source/Drain metal electrodes with various self-assembled monolayers and the works on vertical phase segregation derived from blending dif-TES-ADT with various polymers. Electrical and environmental stabilities in dif-TES-ADT-based OTFTs and their origins are summarized. Finally, a discussion on the emerging applications of dif-TES-ADT OTFTs is explored. We believe that the individual effort summarized in this work will shed light on optimizing the electrical performance of dif-TES-ADT-based transistors and reveal their potential qualities, which will be useful to their applications in next-generation high performance organic electronics.

Funder

Konkuk University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3