Sensitive direct x-ray detectors based on the In–Ga–Zn–O/perovskite heterojunction phototransistor

Author:

Cao Yong,Ge Yongshuai,Sha Xin,Meng Lingqiang,Gao Yuanhong,Li Bo,Yu Xue-FengORCID,Li JiaORCID

Abstract

Abstract Direct x-ray detectors are essential in many applications including medical tomography, security inspection, nondestructive testing, crystallography and astronomy. Despite the rapid advances in recent years, the currently available direct x-ray detectors are still limited by the insufficient photon-to-charge conversion, compromising the detection sensitivity, ease of fabrication, cost and flexibility. Here we demonstrate a device concept of heterojunction phototransistor with high internal-gain effect to realize the sensitive x-ray direct detection. Specifically, the heterojunction phototransistors are mainly composed of an industrially available In–Ga–Zn–O channel and all-inorganic perovskite nanocrystals used as x-ray photoconductor. In contrast to the conventional diode-based x-ray detectors, phototransistor allows both electrical gating and photodoping effect for efficient carrier density modulation, leading to the low dark-current and high photoconductive gain. The introduction of such high-gain mechanism into x-ray detectors can offer internal signal amplification for photogenerated currents without the increment of noise, thereby leading to the high sensitivity over 106 μC Gyair −1 cm−2 and detection limit down to 3 μGyair s−1. These results suggest that the heterojunction x-ray phototransistor can provide the most promising platform to achieve high-performance direct x-ray detectors with both high sensitivity, light weight, flexibility and low cost.

Funder

Doctorial Start-up Fund of Hengyang Normal University

Research Foundation of Education Bureau of Hunan Province

Shenzhen Science and Technology Research Funding

National Natural Science Foundation of China

Guangdong-Hong Kong Technology Cooperation Funding

The Science and Technology Innovation Commission of Shenzhen

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3