The diffusive epidemic process on Barabasi–Albert networks

Author:

Alves T F A,Alves G A,Macedo-Filho A,Ferreira R S,Lima F W S

Abstract

Abstract We present a modified diffusive epidemic process (DEP) that has a finite threshold on scale-free graphs, motivated by the COVID-19 pandemic. The DEP describes the epidemic spreading of a disease in a non-sedentary population, which can describe the spreading of a real disease. Our main modification is to use the Gillespie algorithm with a reaction time t max, exponentially distributed with mean inversely proportional to the node population in order to model the individuals’ interactions. Our simulation results of the modified model on Barabasi–Albert networks are compatible with a continuous absorbing-active phase transition when increasing the average concentration. The transition obeys the mean-field critical exponents β = 1, γ′ = 0 and ν = 1/2. In addition, the system presents logarithmic corrections with pseudo-exponents β ̂ = γ ̂ = 3 / 2 on the order parameter and its fluctuations, respectively. The most evident implication of our simulation results is if the individuals avoid social interactions in order to not spread a disease, this leads the system to have a finite threshold in scale-free graphs.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating preferential attachment graphs via a Pólya urn with expanding colors;Network Science;2024-04-08

2. Modified diffusive epidemic process on Apollonian networks;Journal of Biological Physics;2023-04-29

3. Two-dimensional diffusive epidemic process in the presence of quasiperiodic and quenched disorder;Journal of Statistical Mechanics: Theory and Experiment;2023-04-01

4. Dynamics of semiflexible generalized scale-free polymer networks;Physica A: Statistical Mechanics and its Applications;2022-11

5. Diffusive majority-vote model;Physical Review E;2022-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3