Author:
Alves T F A,Alves G A,Macedo-Filho A,Ferreira R S,Lima F W S
Abstract
Abstract
We present a modified diffusive epidemic process (DEP) that has a finite threshold on scale-free graphs, motivated by the COVID-19 pandemic. The DEP describes the epidemic spreading of a disease in a non-sedentary population, which can describe the spreading of a real disease. Our main modification is to use the Gillespie algorithm with a reaction time t
max, exponentially distributed with mean inversely proportional to the node population in order to model the individuals’ interactions. Our simulation results of the modified model on Barabasi–Albert networks are compatible with a continuous absorbing-active phase transition when increasing the average concentration. The transition obeys the mean-field critical exponents β = 1, γ′ = 0 and ν
⊥ = 1/2. In addition, the system presents logarithmic corrections with pseudo-exponents
β
̂
=
γ
̂
′
=
−
3
/
2
on the order parameter and its fluctuations, respectively. The most evident implication of our simulation results is if the individuals avoid social interactions in order to not spread a disease, this leads the system to have a finite threshold in scale-free graphs.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献