Abstract
AbstractWe introduce a novel preferential attachment model using the draw variables of a modified Pólya urn with an expanding number of colors, notably capable of modeling influential opinions (in terms of vertices of high degree) as the graph evolves. Similar to the Barabási-Albert model, the generated graph grows in size by one vertex at each time instance; in contrast however, each vertex of the graph is uniquely characterized by a color, which is represented by a ball color in the Pólya urn. More specifically at each time step, we draw a ball from the urn and return it to the urn along with a number of reinforcing balls of the same color; we also add another ball of a new color to the urn. We then construct an edge between the new vertex (corresponding to the new color) and the existing vertex whose color ball is drawn. Using color-coded vertices in conjunction with the time-varying reinforcing parameter allows for vertices added (born) later in the process to potentially attain a high degree in a way that is not captured in the Barabási-Albert model. We study the degree count of the vertices by analyzing the draw vectors of the underlying stochastic process. In particular, we establish the probability distribution of the random variable counting the number of draws of a given color which determines the degree of the vertex corresponding to that color in the graph. We further provide simulation results presenting a comparison between our model and the Barabási-Albert network.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献