Generative diffusion in very large dimensions

Author:

Biroli Giulio,Mézard Marc

Abstract

Abstract Generative models based on diffusion have become the state of the art in the last few years, notably for image generation. Here, we analyze them in the high-dimensional limit, where data are formed by a very large number of variables. We use methods from statistical physics and focus on two well-controlled high-dimensional cases: a Gaussian model and the Curie–Weiss model of ferromagnetism. In the latter case, we highlight the mechanism of symmetry breaking in the inverse diffusion, and point out that, in order to reconstruct the relative asymmetry of the two low-temperature states, and thus to obtain the correct probability weights, one needs a database with a number of points much larger than the dimension of each data point. We characterize the scaling laws in the number of data and in the number of dimensions for an efficient generation.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference16 articles.

1. Reverse-time diffusion equation models;Anderson;Stoch. Process. Appl.,1982

2. Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices;Benigni;Ann. Inst. H. Poincare Probab. Stat.,2020

3. Convergence of denoising diffusion models under the manifold hypothesis;De Bortoli,2022

4. Diffusion Schrödinger bridge with applications to score-based generative modeling;De Bortoli,2021

5. The total variation distance between high-dimensional Gaussians with the same mean;Devroye,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3