Author:
Caceffo Fabio,Alba Vincenzo
Abstract
Abstract
We investigate the dynamics of the fermionic logarithmic negativity in a free-fermion chain with a localized loss, which acts as a dissipative impurity. The chain is initially prepared in a generic Fermi sea. In the standard hydrodynamic limit of large subsystems and long times, with their ratio fixed, the negativity between two subsystems is described by a simple formula, which depends only on the effective absorption coefficient of the impurity. The negativity grows linearly at short times, then saturating to a volume-law scaling. Physically, this reflects the continuous production with time of entangling pairs of excitations at the impurity site. Interestingly, the negativity is not the same as the Rényi mutual information with Rényi index
1
/
2
, in contrast with the case of unitary dynamics. This reflects the interplay between dissipative and unitary processes. The negativity content of the entangling pairs is obtained in terms of an effective two-state mixed density matrix for the subsystems. Criticality in the initial Fermi sea is reflected in the presence of logarithmic corrections. The prefactor of the logarithmic scaling depends on the loss rate, suggesting a nontrivial interplay between dissipation and criticality.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献