Spectral and steady-state properties of fermionic random quadratic Liouvillians

Author:

Costa João1,Ribeiro Pedro21,De Luca Andrea3,Prosen Tomaž4,Sá Lucas1

Affiliation:

1. University of Lisbon

2. Beijing Computational Science Research Center

3. Laboratoire de Physique Théorique et Modélisation

4. University of Ljubljana

Abstract

We study spectral and steady-state properties of generic Markovian dissipative systems described by quadratic fermionic Liouvillian operators of the Lindblad form. The Hamiltonian dynamics is modeled by a generic random quadratic operator, i.e., as a featureless superconductor of class D, whereas the Markovian dissipation is described by MM random linear jump operators. By varying the dissipation strength and the ratio of dissipative channels per fermion, m=M/(2N_F)m=M/(2NF), we find two distinct phases where the support of the single-particle spectrum has one or two connected components. In the strongly dissipative regime, this transition occurs for m=1/2m=1/2 and is concomitant with a qualitative change in both the steady-state and the spectral gap that rules the large-time dynamics. Above this threshold, the spectral gap and the steady-state purity qualitatively agree with the fully generic (i.e., non-quadratic) case studied recently. Below m=1/2m=1/2, the spectral gap closes in the thermodynamic limit and the steady-state decouples into an ergodic and a nonergodic sector yielding a non-monotonic steady-state purity as a function of the dissipation strength. Our results show that some of the universal features previously observed for fully random Liouvillians are generic for a sufficiently large number of jump operators. On the other hand, if the number of dissipation channels is decreased the system can exhibit nonergodic features, rendering it possible to suppress dissipation in protected subspaces even in the presence of strong system-environment coupling.

Funder

Agence Nationale de la Recherche

European Research Council

Fundação para a Ciência e a Tecnologia

Horizon 2020

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3