Encounter-based model of a run-and-tumble particle

Author:

Bressloff Paul C

Abstract

Abstract In this paper we extend the encounter-based model of diffusion-mediated surface absorption to the case of an unbiased run-and-tumble particle (RTP) confined to a finite interval [0, L] and switching between two constant velocity states ±v at a rate α. The encounter-based formalism is motivated by the observation that various surface-based reactions are better modeled in terms of a reactivity that is a function of the amount of time that a particle spends in a neighborhood of an absorbing surface, which is specified by a functional known as the boundary local time. The effects of surface reactions are taken into account by identifying the first passage time (FPT) for absorption with the event that the local time crosses some random threshold ^ . In the case of a Brownian particle, the local time (t) is a continuous non-decreasing function of the time t. Taking \ell ]$?> Ψ ( ) P [ ^ > ] to be an exponential distribution, Ψ [ ] = e κ 0 , is equivalent to imposing a Robin boundary condition with a constant rate of absorption κ 0. One major difference in the encounter-based model of an RTP is that the boundary local time (t) is a now a discrete random variable that counts the number of collisions of the RTP with the boundary. Given this modification, we show that in the case of a geometric distribution Ψ() = z , z = 1/(1 + κ 0/v), we recover the RTP analog of the Robin boundary condition. This allows us to solve the boundary value problem (BVP) for the joint probability density for particle position and the local time, and thus incorporate more general models of absorption based on non-geometric distributions Ψ(). We illustrate the theory by calculating the mean FPT (MFPT) for absorption at x = L given a totally reflecting boundary at x = 0. We also determine the splitting probability for absorption at x = L when the boundary at x = 0 is totally absorbing.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3