Persistent and anti-persistent motion in bounded and unbounded space: resolution of the first-passage problem

Author:

Marris DanielORCID,Giuggioli LucaORCID

Abstract

Abstract The presence of temporal correlations in random movement trajectories is a widespread phenomenon across biological, chemical and physical systems. The ubiquity of persistent and anti-persistent motion in many natural and synthetic systems has led to a large literature on the modelling of temporally correlated movement paths. Despite the substantial body of work, little progress has been made to determine the dynamical properties of various transport related quantities, including the first-passage or first-hitting probability to one or multiple absorbing targets when space is bounded. To bridge this knowledge gap we generalise the renewal theory of first-passage and splitting probabilities to correlated discrete variables. We do so in arbitrary dimensions on a lattice for the so-called correlated or persistent random walk, the one step non-Markovian extension of the simple lattice random walk in bounded and unbounded space. We focus on bounded domains and consider both persistent and anti-persistent motion in hypercubic lattices as well as the hexagonal lattice. The discrete formalism allows us to extend the notion of the first-passage to that of the directional first-passage, whereby the walker must reach the target from a prescribed direction for a hitting event to occur. As an application to spatio-temporal observations of correlated moving cells that may be either repelled or attracted to hard surfaces, we compare the first-passage statistics to a target within a reflecting domain depending on whether an interaction with the reflective interface invokes a reversal of the movement direction or not. With strong persistence we observe multi-modality in the first-passage distribution in the former case, which instead is greatly suppressed in the latter.

Funder

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

Publisher

IOP Publishing

Reference105 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3