Abstract
Abstract
To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials, a new class of descriptions of atomic interactions has emerged and been widely applied; i.e. machine learning potentials (MLPs). One recently developed type of MLP is the deep potential (DP) method. In this review, we provide an introduction to DP methods in computational materials science. The theory underlying the DP method is presented along with a step-by-step introduction to their development and use. We also review materials applications of DPs in a wide range of materials systems. The DP Library provides a platform for the development of DPs and a database of extant DPs. We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.
Funder
National Natural Science Foundation of China
Collaborative Research Fund, Research Grants Council, Hong Kong SAR
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献