Pulsed-field magnetisation of Y-Ba-Cu-O bulk superconductors fabricated by the infiltration growth technique

Author:

Namburi Devendra KORCID,Takahashi KORCID,Hirano TORCID,Kamada T,Fujishiro HORCID,Shi Y-HORCID,Cardwell D AORCID,Durrell J HORCID,Ainslie M DORCID

Abstract

Abstract Bulk high temperature superconductors based on the rare-earth copper oxides can be used effectively as trapped field magnets capable of generating large magnetic fields. The top-seeded infiltration growth (TSIG) processing technique can provide a more homogeneous microstructure and therefore more uniform superconducting properties than samples grown using conventional melt growth processes. In the present investigation, the properties of bulk, single grain superconductors processed by TSIG and magnetised by the pulsed-field magnetisation technique using a copper-wound solenoid have been studied. A trapped field of ∼3 T has been achieved in a 2-step buffer-assisted TSIG-processed Y-Ba-Cu-O (YBCO) sample at 40 K by magnetising the bulk superconductor completely via a single-pulse magnetisation process. Samples were also subjected to pulsed-field magnetisation at 65 K and by conventional field-cooled magnetisation at 77 K for comparison. Good correlation was observed between the microstructures, critical current densities and trapped field performance of bulk samples fabricated by TSIG and magnetised by pulsed-field and field-cooled magnetisation. The homogeneous distribution of Y2BaCuO5 inclusions within the microstructure of bulk YBCO samples fabricated by the 2-step buffer-assisted TSIG process reduces inhomogeneous flux penetration into the interior of the sample. This, in turn, results in a lower temperature rise of the bulk superconductor during the pulsed-field magnetisation process and a more effective and reliable magnetisation process.

Funder

Engineering and Physical Sciences Research Council

King Abdulaziz City for Science and Technology

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3