Abstract
Abstract
The concept of a high-gradient trapped field magnet (HG-TFM), which incorporates a hybrid system of two (RE)BaCuO superconducting bulk components with different functions, was proposed in 2021 by the authors based on the results of numerical simulations. The HG-TFM as a desktop-type magnet can be a more effective way to generate a higher magnetic field gradient product of Bz
· dBz
/dz (>−1400 T2 m−1, as calculated for a pure water), which can realize a quasi-microgravity space applicable for Space Environment Utilization on a laboratory scale. In this study, to validate the quasi-microgravity space in the HG-TFM, a prototype HG-TFM apparatus has been built using a slit-bulk TFM and stacked full-TFM (without slits) with inner diameters of 36 mm. After field-cooled magnetization from 8.60 T at 21 K, a trapped field of B
T = 8.57 T was achieved at the center (i.e. at the bottom of a room temperature bore of 25 mm diameter outside the vacuum chamber), and consequently, a maximum Bz
· dBz
/dz = −1930 T2 m−1 was obtained at the intermediate position between the slit-bulk TFM and the stacked full-TFM. Magnetic levitation was demonstrated successfully for bismuth particles and a pure water drop, which validates the quasi-microgravity environment in the HG-TFM. Based on numerical simulation results of the trapped field profile, it is concluded that the reason for the instability of the levitated targets is because of the repulsive magnetic force applied along the horizontal plane. The levitating state can be controllable, for example, by changing the operating temperature, which would allow objects to levitate statically along the central axis.
Funder
Engineering and Physical Sciences Research Council
Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
Japan Society for the Promotion of Science
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献