Flux jumps in ring-shaped and assembled bulk superconductors during pulsed field magnetization

Author:

Zhou DifanORCID,Shi YunhuaORCID,Dennis Anthony R,Cardwell David AORCID,Durrell John HORCID

Abstract

Abstract Bulk (RE)BCO, where RE is a rare-earth element or yttrium, superconductors fabricated in the form of rings are potentially useful for a variety of solenoidal-type applications, such as small, high field nuclear magnetic resonance and electromagnetic undulators. It is anticipated that the practical exploitation of these technologically important materials will involve pulse field magnetization (PFM) and, consequently, it is important to understand the behavior of ring-shaped samples subjected to the PFM process. Macroscopic flux jumps were observed in PFM experiments on ring-shaped bulk samples when the peak applied field reaches a threshold magnitude, similar to behavior reported previously in cylindrical samples. Magnetic flux jumps inward when the thermal instability is triggered, however it subsequently flows outwards from the sample, resulting in a relatively low trapped field. This behavior is attributed to a variety of effects, including the inhomogeneity of the material, which may lead to the formation of localized hot spots during the PFM process. In order to further elucidate this phenomena, the properties of a structure consisting of a bulk superconducting ring with a cylindrical superconductor core were studied. We observe that, although a flux jump occurs consistently in the ring, a critical state is established at the boundary of the ring-shaped sample and the core. We provide a detailed account of these experimental observations and provide an explanation in terms of the current understanding of the PFM process.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3