Non-uniform critical current and stacking effect remedy for multi-filament REBCO tapes with potential defects

Author:

Cai Tiantian,Wang MingyangORCID,Hao LuningORCID,Meng Xuan’ang,Chen Haolan,Jiang JunjieORCID,Sheng JieORCID,Jin Zhijian

Abstract

Abstract The high aspect ratio of REBCO tapes has a significant impact on several characteristics in high-temperature superconducting applications, such as critical current and AC loss. Narrow filamentary technology can effectively reduce the impact of magnetic field dependence and enhance the electromagnetic performance of REBCO tapes. However, the existing methods are constrained by the trade-off between the narrow degree of REBCO filaments and high current capacity. Meanwhile, when processing REBCO tapes for large-scale magnets, there is a great possibility that local defects are lurking. A striated narrow-stacked (NS) structure is proposed based on the existing narrowing methods to address these challenges. To verify the validity of this structure, it is imperative to explore the non-uniform critical current and stacking effect on performance for multi-filament REBCO tapes with potential defects. This article introduces a magnetic extended network (MEN) model to analyze the electrical characteristics of striated NS structures with different types of potential defects. Then, by coupling with a 3D finite element method electromagnetic module, the calculation results of the MEN model are visualized and used to analyze the electromagnetic characteristics including current sharing mechanism, magnetic field distribution, and critical current compensation due to stacking effect. It is found that stack structures successfully provide the performance remedy for multi-filament REBCO tapes with potential defects. This study aims to promote the narrowing improvement of REBCO tapes in high-field magnets and high-current applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3