Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers

Author:

Tsuchiya KiyosumiORCID,Wang Xudong,Fujita Shinji,Ichinose AtaruORCID,Yamada Kyohei,Terashima Akio,Kikuchi AkihiroORCID

Abstract

Abstract Over the last 20 years, technologies for manufacturing rare-earth barium copper oxide (REBCO)-coated conductors have undergone a steady development. Currently, the properties of these conductors are reasonably stable owing to the intensive efforts of the manufacturers. However, for high-field magnet applications, such as the magnets used in nuclear magnetic resonance instruments, accelerators, and fusion reactors, further enhancements in the current-carrying capabilities and/or the current densities of the conductors under a high magnetic field are necessary. Recently, several conductors doped with artificial pinning centers (APCs) have become commercially available, primarily from four manufacturers: Fujikura, Shanghai ST, SuperOx, and SuperPower. In this study, we characterized these relatively new conductors from the viewpoint of a magnet designer. We measured the critical currents (I c) of full-size 4 mm wide conductors in a wide field range at 4.2 K and 77 K; we also measured the critical temperatures. The measurement results showed that the I c values at 4.2 K under perpendicular fields for these conductors are significantly greater than those of non-APC conductors; for the 4 mm wide conductors, the I c values are in the range of 300–740 A and 450–1000 A at 18 T and 12 T, respectively. Furthermore, we clarified that the non-Cu current density (J c) at 4.2 K for some of the investigated conductors is more than twice the J c of the recent Nb3Sn conductors in fields exceeding 15 T. In the investigated commercial REBCO-APC conductors, the highest layer J c of ∼60 kA mm−2 (at 18 T and 4.2 K) was noted. We also investigated the I cB relationship at 4.2 K for the recent REBCO-APC conductors.

Funder

JSPS

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3