Electromagnetic strain measurements and two-directional mechanical stress estimation for a REBaCuO ring bulk reinforced by a metal ring during field-cooled magnetization

Author:

Namba SoraORCID,Fujishiro HiroyukiORCID,Naito TomoyukiORCID,Ainslie Mark DORCID,Huang Kai YORCID

Abstract

Abstract In this paper, simultaneous measurements of the electromagnetic strains along both the circumferential (θ) and radial (r) directions are reported for a large single-grain EuBaCuO ring bulk reinforced by an Al alloy ring during field-cooled magnetization (FCM) from 5 T at 50 K using several strain gauges adhered to the surface. To verify the experimental results and to understand the complex stress–strain behavior, mechanical analyses were carried out using a three-dimensional finite element model that closely represents the experimental setup. The simulation results of the electromagnetic strains along both directions showed excellent qualitative and quantitative agreement with the experimental ones. These results strongly suggest that the numerical model must include the exact same structure (size, shape and materials) of the mechanical support structure as the experimental setup in order to reproduce the experimental results both qualitatively as well as quantitatively. This also explains our previous research (SuST 2019 32 015007), where the measured circumferential strains were about 50% smaller those in the numerical simulation. Furthermore, the electromagnetic stresses along both directions during the FCM process are estimated from the obtained experimental strains. As a result, the estimated stresses were fairly consistent with those obtained by the numerical simulations, suggesting that our stress–strain simulation technique is both qualitatively and quantitatively reliable and useful to clarify the possibility of mechanical fracture of bulk superconductors.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3