Critical fields of Nb3Sn prepared for superconducting cavities

Author:

Keckert SORCID,Junginger T,Buck T,Hall D,Kolb P,Kugeler O,Laxdal R,Liepe M,Posen S,Prokscha T,Salman Z,Suter A,Knobloch J

Abstract

Abstract Nb3Sn is currently the most promising material other than niobium for future superconducting radiofrequency cavities. Critical fields above 120 mT in pulsed operation and about 80 mT in CW have been achieved in cavity tests. This is large compared to the lower critical field as derived from the London penetration depth, extracted from low field surface impedance measurements. In this paper direct measurements of the London penetration depth from which the lower critical field and the superheating field are derived are presented. The field of first vortex penetration is measured under DC and RF fields. The combined results confirm that Nb3Sn cavities are indeed operated in a metastable state above the lower critical field but are currently limited to a critical field well below the superheating field.

Funder

U.S. National Science Foundation

European Union’s Horizon 2020 Research and Innovation programme

FP7 People: Marie-Curie Actions

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3