Oxygen out-diffusion in REBCO coated conductor due to heating

Author:

Lu JunORCID,Xin Yan,Jarvis Brent,Bai Hongyu

Abstract

Abstract Rare earth barium copper oxide (REBCO) coated conductor has emerged as one of the high T c superconductors suitable for future ultrahigh field superconducting magnet applications. In the design and fabrication of such ultrahigh field REBCO magnets, it is essential to understand the behavior of REBCO coated conductor. The effect of heating on the properties of commercial REBCO coated conductors is very important for many practical reasons. Nevertheless, a comprehensive study on this effect have not yet been presented in the published literature. This work studies a commercial REBCO coated conductor heat-treated at temperatures between 175 °C and 300 °C for various durations. Critical current and lap joint resistivity were measured at 77 K and 4.2 K for the heat-treated samples. We found that critical current degrades with heat treatment time and temperature. This degradation can be described by a one-dimensional oxygen out-diffusion model with a diffusion coefficient of D = 2.5 × 10−6 exp (−1.17eV kT−1) m2 s−1. The heat treatment also causes appreciable increase in joint resistivity. Comprehensive structural and chemical analyses were performed on Cu/Ag/RECBO interfaces by transmission electron microscopy. Our electron energy loss spectroscopy study provided direct evidence of oxygen deficiency in the heat treated REBCO samples. In addition, it is found that the oxygen diffused out of the REBCO layer forms mostly Cu2O at both Ag/REBCO and Cu/Ag interfaces. Cu2O is also observed at grain boundaries of the Ag layer. The oxygen out-diffusion model proposed in this work is used to predict REBCO thermal degradation in several engineering scenarios.

Funder

Division of Materials Research

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3