Thermal degradation analysis and optimization of controlled heat treatment for stacked high temperature superconducting tapes

Author:

Yang ShigeORCID,Tang BohanORCID,Yue ZhilaiORCID,Yu HuiORCID,Xie BowenORCID,Li SichengORCID,Chen YanquanORCID,Niu RuiORCID,Zhao JunORCID,Zhou PengORCID,Chen WengeORCID,Jiang ShiliORCID,Jiang DonghuiORCID,Kuang GuangliORCID

Abstract

Abstract High temperature superconducting (HTS) tapes have crucial applications for generating high magnetic fields with minimal power input. Given a single tape has a limited current-carrying capacity, stacked tapes are common, fabricated through methods like solder soldering or epoxy impregnation requiring heat treatment. In this work, we have investigated the efficient region for vacuum heat treatment applicable of commercial HTS tapes, analysed the thermal degradation principles and accordingly proposed a controlled heat treatment process for stacked HTS tapes to achieve more precise regulation of the critical current ( I c ). This heat treatment process was explored using a specialized multi-temperature zone vacuum system. Critical parameters in this process include heat treatment temperature, duration and pressure on the tape. A series of experiments were conducted at 77 K in a self-field to investigate how these parameters affect the superconductivity performance of stacked HTS tapes. Based on the experimental results, an optimal heat treatment process has been proposed. Under the current process, with the heat treatment temperature set at 200 °C, duration at 20 min, and pressure on the tape at 12 MPa, the samples exhibit favourable properties characterized by a smooth and neat appearance without defects such as pinholes or false soldering, and the superconductivity performance can be consistently maintained at more than 97%. The obtained measurements were compared with simulated results, demonstrating an error margin within 0.5%. Moreover, precise control of I c is achieved, tailored to tape and stacking specifications, allowing manageable degradation as required. This heat treatment process for stacked HTS tapes holds significant importance, especially in the context of designing cable-in-conduit conductors fabricated with stacked HTS tapes. It serves as a valuable reference for further advancements in this field.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

High Magnetic Field Laboratory of Anhui Province

HFIPS Director’s Fund

Large Research Infrastructures Maintenance and Reconstruction Project, CAS

Pre-research Project on Key Technologies of Integrated Experimental Facilities of Steady High Magnetic Field and Optical Spectroscopy

Hefei Comprehensive National Science Center

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3