A reconstructed three-dimensional HTS bulk electromagnetic model considering J c spatial inhomogeneity and its implementation in a bulks’ combination system

Author:

Cheng Yanxing,Zheng JunORCID,Huang Huan,Deng Zigang

Abstract

Abstract High-temperature superconducting (HTS) bulks in HTS Maglev systems are always arrayed in a combination to make full use of the applied magnetic field of the permanent magnet guideway (PMG). An excellent combination scheme improves the overall levitation and guidance performance significantly. In this paper, a three-dimensional (3D) electromagnetic model of the real HTS-PMG maglev system with an HTS bulk array was established. This model comprehensively expresses the influence of various factors on the E J relationship and the 3D spatial distribution of J c, including internal factors such as the inhomogeneity and anisotropy of electromagnetic characteristics, as well as external factors such as applied magnetic field and working temperature. A ternary function was proposed to describe the uneven distribution of J c caused by the bulk’s growth process, which is an interesting phenomenological modeling attempt. In the simulations of the bulks’ combinations, perfect magnetic conductor boundary conditions were applied on the contact surface to simulate two bulks touching each other. Besides, the research target includes reproducing the shapes, the orientations, and the combination scheme of HTS bulks in the real PMG magnetic field. The calculation results of levitation force of the cylindrical bulk under different spatial orientations above the PMG were compared with the experimental results, through which the accuracy of the model was verified. On this basis, the influence of the magnetic field generated by the superconducting current on the nearby bulk was further explored. It was found that this magnetic field has a small contribution to the total levitation force and a relatively obvious influence on the guidance force. When the lateral displacement is large, such as 5 mm, the magnetic field generated by the superconducting current slightly increases the total guidance force stiffness. According to more simulated conditions, some optimization strategies on bulk combinations were proposed. This work provides not only a 3D descriptive model for fitting the real multi-bulk-combination maglev scenarios but also some optimization strategies for the HTS maglev transportation applications.

Funder

Research Funds for the Central Universities

National Natural Science Foundation of China

State Key Laboratory of Traction Power

Chengdu Municipal International S&T Cooperation Program

Sichuan Provincial Science and Technology Program

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3