Abstract
Abstract
Neuromorphic computing is a broad field that uses biological inspiration to address computing design. It is being pursued in many hardware technologies, both novel and conventional. We discuss the use of superconductive electronics for neuromorphic computing and why they are a compelling technology for the design of neuromorphic computing systems. One example is the natural spiking behavior of Josephson junctions and the ability to transmit short voltage spikes without the resistive capacitive time constants that typically hinder spike-based computing. We review the work that has been done on biologically inspired superconductive devices, circuits, and architectures and discuss the scaling potential of these demonstrations.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献