Abstract
Abstract
High temperature superconducting (HTS) flux pumps can generate ultra-high currents (>1 kA) without the requirement for thermally inefficient room temperature current leads. Ultra-high currents enable physically smaller magnets with significantly less inductance unlocking new design opportunities. However, limited by intrinsically low electrical power efficiencies, existing HTS flux pumps cannot output high voltage or high power. In this work, we design, devise, and experimentally verify a transformer–rectifier type HTS flux pump using Jc(B) switching. We show that the rectification can be achieved by exploiting the HTS E-J relation with the application of DC magnetic fields. A quasi-persistent current of 54.5 A has been achieved at 77 K only limited by the load coil critical current. In addition, the electrical power efficiencies of both half-wave and full-wave flux pump are derived. We illustrate that the fundamental J
c(B) mechanism provides significantly higher efficiency than existing HTS flux pumps. This advancement will overthrow the common knowledge that HTS flux pumps could only be used for maintaining rather than fast ramping magnetic fields.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献