Abstract
Abstract
Evapotranspiration is an important cooling mechanism in urban green space (UGS). Irrigating vegetated surfaces with potable water, collected stormwater or recycled sewage water has the potential to increase the cooling effect of UGS by increasing evapotranspiration. Such cooling effect may not always be strong because evapotranspiration is dependent on local and regional factors such as background climate, seasonality and vegetation type. When using irrigation for cooling, city managers also need to consider management issues such as irrigation water supply and amenity use of the UGS. This study aims to develop a theoretical framework that explains the physical and energetic mechanisms of irrigation cooling effect and a framework to assist city managers to make decision about the use of irrigation for urban cooling. This is achieved by reviewing the impacts of irrigation on local climate reported in the literature and identifying the regional and local factors that influence irrigation cooling effect in warm seasons. The literature suggests that irrigation can potentially reduce daily maximum air temperature and ground surface temperature by approximately 2.5 °C and 4.9 °C, respectively, depending on weather conditions and irrigation amount. Background climate is an important factor that influences the cooling potentials of irrigation. Cities with dry and warm climates have the highest cooling potentials from irrigation. The cooling potentials are also influenced by seasonality and weather, vegetation type, irrigation time of day and irrigation amount. Cities with a dry and warm season can consider using irrigation to mitigate urban heat within UGS because such climatic conditions can increase cooling potentials. To maximise irrigation cooling effect, cities with abundant irrigation water supply can use a soil moisture-controlled irrigation regime while those with limited supply can use a temperature-controlled regime. More studies are required to understand the cooling potentials of irrigating small, individual UGS.
Funder
National Health and Medical Research Council
Australian Government Research Training Program Scholarship
Madeleine Selwyn-Smith Memorial Scholarships
Rowden White Scholarship
Cooperative Research Centres program
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献