Optimum Turf Grass Irrigation Requirements and Corresponding Water- Energy-CO2 Nexus across Harris County, Texas

Author:

Awal Ripendra,Fares AliORCID,Habibi Hamideh

Abstract

Harris County is one of the most populated counties in the United States. About 30% of domestic water use in the U.S. is for outdoor activities, especially landscape irrigation and gardening. Optimum landscape and garden irrigation contributes to substantial water and energy savings and a substantial reduction of CO2 emissions into the atmosphere. Thus, the objectives of this work are to (i) calculate site-specific turf grass irrigation water requirements across Harris County and (ii) calculate CO2 emission reductions and water and energy savings across the county if optimum turf grass irrigation is adopted. The Irrigation Management System was used with site-specific soil hydrological data, turf crop water uptake parameters (root distribution and crop coefficient), and long-term daily rainfall and reference evapotranspiration to calculate irrigation water demand across Harris County. The Irrigation Management System outputs include irrigation requirements, runoff, and drainage below the root system. Savings in turf irrigation requirements and energy and their corresponding reduction in CO2 emission were calculated. Irrigation water requirements decreased moving across the county from its north-west to its south-east corners. However, the opposite happened for the runoff and excess drainage below the rootzone. The main reason for this variability is the combined effect of rainfall, reference evapotranspiration, and soil types. Based on the result, if the average annual irrigation water use across the county is 25 mm higher than the optimum level, this will result in 10.45 million m3 of water losses (equivalent water use for 30,561 single families), 4413 MWh excess energy use, and the emission of 2599 metric tons of CO2.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference32 articles.

1. Electric Power Research Institute https://www.epri.com/#/?lang=en-US

2. The impact of CO2 emissions and economic growth on energy consumption in 58 countries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3