The role of peatland degradation, protection and restoration for climate change mitigation in the SSP scenarios

Author:

Doelman J CORCID,Verhagen WORCID,Stehfest EORCID,van Vuuren D PORCID

Abstract

Abstract Peatlands only cover a small fraction of the global land surface (∼3%) but store large amounts of carbon (∼600 GtC). Drainage of peatlands for agriculture results in the decomposition of organic matter, leading to greenhouse gas (GHG) emissions. As a result, degraded peatlands are currently responsible for 2%–3% of global anthropogenic emissions. Preventing further degradation of peatlands and restoration (i.e. rewetting) are therefore important for climate change mitigation. In this study, we show that land-use change in three SSP scenarios with optimistic, recent trends, and pessimistic assumptions leads to peatland degradation between 2020 and 2100 ranging from −7 to +10 Mha (−23% to +32%), and a continuation or even an increase in annual GHG emissions (−0.1 to +0.4 GtCO2-eq yr−1). In default mitigation scenarios without a specific focus on peatlands, peatland degradation is reduced due to synergies with forest protection and afforestation policies. However, this still leaves large amounts of GHG emissions from degraded peatlands unabated, causing cumulative CO2 emissions from 2020 to 2100 in an SSP2-1.5 °C scenario of 73 GtCO2. In a mitigation scenario with dedicated peatland restoration policy, GHG emissions from degraded peatlands can be reduced to nearly zero without major effects on projected land-use dynamics. This underlines the opportunity of peatland protection and restoration for climate change mitigation and the need to synergistically combine different land-based mitigation measures. Peatland location and extent estimates vary widely in the literature; a sensitivity analysis implementing various spatial estimates shows that especially in tropical regions degraded peatland area and peatland emissions are highly uncertain. The required protection and mitigation efforts are geographically unequally distributed, with large concentrations of peatlands in Russia, Europe, North America and Indonesia (33% of emission reductions are located in Indonesia). This indicates an important role for only a few countries that have the opportunity to protect and restore peatlands with global benefits for climate change mitigation.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3