Modulating the microscopic lattice distortions through the Al-rich layers for boosting the ferroelectricity in Al:HfO2 nanofilms

Author:

Yao LuluORCID,Das Sambit,Liu Xin,Wu Kai,Cheng Yonghong,Gavini Vikram,Xiao Bing

Abstract

Abstract Combining the experimental characterization with the large-scale density functional theory calculations based on finite-element discretization (DFT-FE), we address the stabilization of polar orthorhombic phases (o-HfO2) in Al:HfO2 nanofilms by means of the atomic registry distortions and lattice deformation caused by Al substitutional defects (AlHf) and Schottky defects (2AlHf + VO) in tetragonal phases (t-HfO2) or monoclinic phases (m-HfO2). The phase transformation directly from the t-HfO2 into polar o-HfO2 are also elucidated within a heterogeneous distribution of Al dopants in both t-HfO2 bulk crystal structure and Al:HfO2 nanofilm. It is revealed using large-scale DFT calculations that the Al substitutional defects (AlHf) or the Schottky defect (2AlHf + VO) could induce the highly extended atomic registry distortions or lattice deformation in the t- and m-HfO2 phases, but such effects are greatly diminished in ferroelectric orthorhombic phase. By purposely engineering the multiple AlHf defects to form dopant-rich layers in paraelectric t-HfO2 nanofilm or bulk crystal, the induced extended lattice distortions surrounding the defect sites exhibit the shearing-like atomic displacement vector field. The large-scale DFT calculations further predicted that the shearing-like microscopic lattice distortions could directly induce the phase transformation from the t-HfO2 into polar orthorhombic phase in both Al:HfO2 bulk crystal and nanofilms, leading to the large remanent polarization observed in Al:HfO2 nanofilms with the presence of Al-rich layers. The current study demonstrates that the ferroelectricity of HfO2 bulk crystal or thin film can be optimized and tuned by delicately engineering both the distribution and concentration of Al dopants in atomic layer deposition without applying the top capping electrode, providing the extra flexibility for designing the HfO2 based electronic devices in the future.

Funder

Young Talent Support Plan of Xi’an Jiaotong University

National Energy Research Scientific Computing Center

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference91 articles.

1. Ferroelectricity in hafnium oxide thin films;Böscke;Appl. Phys. Lett.,2011

2. Giant electroresistance in ferroelectric tunnel junctions;Zhuravlev;Phys. Rev. Lett.,2005

3. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories;Muller,2013

4. Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors;Mueller;IEEE Electron Device Lett.,2012

5. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG;Muller,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3