Abstract
Abstract
We investigated the optical feedback effects on the static and dynamic characteristics of 1.3 μm quantum-dot (QD) Fabry–Pérot laser under reflection from −40 dB up to −8 dB. The onset of coherence collapse is determined as −14 dB from the optical and electrical spectra. Although the degradation in small signal modulation is reported above this critical feedback level, transmission operation with available eye diagram under higher feedback is demonstrated. Under 10 Gb s−1 modulation, there is no obvious degradation in eye diagram regarding the eye shape and extinction ratio up to feedback ratio of −8 dB. The higher feedback tolerance of QD laser under large signal modulation is attributed to the impact of gain compression. This high-speed feedback-resistant operation also indicates that QD laser is a promising light source for isolator-free photonic integrated circuits.
Funder
National Epitaxy Facility
Royal Academy of Engineering
Engineering and Physical Sciences Research Council
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献