Thermal and non-thermal ablation mechanisms in crystalline silicon by femtosecond laser pulses: classical approach of the carrier density two temperature model

Author:

Vaghasiya HardikORCID,Krause Stephan,Miclea Paul-Tiberiu

Abstract

Abstract Laser micromachining has attracted considerable interest because of its wide range of applications across nearly all manufacturing sectors and mostly in semiconductors such as silicon. However, modern micro-manufacturing demands progressive product miniaturization, high accuracy, and high-precision material removal. For this purpose, a fundamental study of the interaction between ultrashort laser pulses and silicon will be valuable for studying ablation characteristics and ablation performance. The femtosecond laser pulse interaction with the silicon is divided into five parts: (a) the interaction of laser light with the carriers, (b) variation of the carrier density and carrier temperature, (c) energy exchange between carriers and lattice, (d) thermomechanical response of the material, and (e) ablation. The evolution of the carrier density and carrier-lattice energy coupling equation is solved simultaneously to determine the optimum value of the ablation width and ablation depth of femtosecond laser pulses on the silicon. The first time, 2D axial symmetry thermal and non-thermal ablation profiles were compared with the experimental result at fluence ranging from 0.75 to 9 J cm−2 at the wavelength of 515 nm and 180 fs laser on the silicon sample. A comparative study of damage thresholds from experiments and simulations is presented. The concordance between model calculations and experimental data demonstrates that fs laser ablation is thermal in nature in low fluence regime, whereas it is non- thermal in a high-fluence regime. Fundamental information such as the time evolution of the carrier density, carrier temperature evolution, and lattice temperature evolution can be obtained from the simulation results.

Funder

High-precision fs-laser structuring of multilayer systems

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Picosecond laser processing of diamond cutting edges;Dold,2013

2. Pulsed laser ablation of metals in vacuum: DSMC study versus experiment;Bykov;Appl. Phys. A,2004

3. Femtosecond laser processing amorphous silicon thin film for photonics application A;No,2019

4. Phenomenological model for pisosecond-pulse laser annealing of semiconductors;Agassi;J. Appl. Phys.,1984

5. Thermal response of metals to ultrashort-pulse laser excitation;Sherman;Phys. Rev. Lett.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3