Spark discharges at the interface of water and heptane: emulsification and effect on discharge probability

Author:

Dorval Audren,Stafford LucORCID,Hamdan AhmadORCID

Abstract

Abstract Spark discharges in liquid have shown great potential for use in numerous applications, such as pollutant degradation, precision micromachining, and nanomaterials production. Herein, spark discharges are initiated at the interface of two immiscible liquids, heptane and water. This leads to the formation of an emulsion via mechanisms akin to bubble dynamics and instabilities at the gas–liquid. At high discharge number, an additional mechanism contributes to emulsion formation, resulting in an increase in the number of smaller heptane droplets in water. Analyses of the current–voltage characteristics show that high probability of discharge occurrence is obtained when the electrodes are aligned with the interface. This result is correlated with the low erosion rate of the electrodes. In the case of discharges at the interface, we observed that beyond a certain number of discharges, the breakdown voltage drops; far from the interface, it increases with the discharge number. Based on 2D simulation with a Monte Carlo approach to consider various droplet distribution in water, the electric field distribution is determined. The results support the fact that the decrease in breakdown voltage may be attributed to the intensification of the E-field in water close the heptane droplet. Therefore, spark discharges generated at the interface of a heptane/water system produce an emulsion of heptane in water, which facilitates the occurrence of subsequent discharges by intensifying the electric field and reducing the breakdown voltage.

Funder

Fonds de recherche du Québec - Nature et technologies

Natural Sciences and Engineering Research Councilof Canada

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3