Degradation of methylene blue by pulsed nanosecond discharge in Ar, O2, and N2 gaseous bubbles in water: Evaluation of direct and postprocessing modes

Author:

Bourbeau Naomi1,Soussan Laure1,Hamdan Ahmad1ORCID

Affiliation:

1. Groupe de physique des plasmas, Département de Physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal H2V 0B3, Québec, Canada

Abstract

Dye-based water pollution is a subject of great concern as it has been linked to many health hazards. Considering their stable structures, some dyes, such as methylene blue (MB), cannot be easily removed from water. However, recent studies show that plasma-assisted processing has great potential for eliminating these dyes from water bodies. Among the different configurations of plasmas, discharges in gaseous bubbles in water are particularly promising in terms of water processing. The bubble-liquid discontinuity in such plasmas significantly facilitates the occurrence of discharge, and the modification of gas composition allows for controlling induced chemical reactions. In this study, we investigate the degradation of MB using pulsed discharges (amplitude of 20 kV, pulse duration of 500 ns, and repetition rate of 1 kHz) in Ar, O2, and N2 gaseous bubbles dispersed in water. The degradation of MB is evaluated in the direct mode, i.e., MB is present in the water during discharge as well as in the postprocessing mode, i.e., MB is added to water after plasma processing. Based on the obtained results, the most and least efficient degradation rates measured in the direct mode are achieved with O2 and N2 bubbles, respectively. Meanwhile, in the case of the postprocessing mode, degradation with N2 bubbles is initially more efficient than that with O2 or Ar. However, after hundreds of hours, higher degradation efficiency (up to 100%) is observed with O2 and Ar gas bubbles and not with N2. The findings reported herein are of great importance, particularly considering that plasma processing is complementary to the conventional techniques used in water depollution applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Canada Foundation for Innovation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3