Electromagnetically induced transparency metamaterials: theories, designs and applications

Author:

Zhu LeiORCID,Dong Liang

Abstract

Abstract Electromagnetically induced transparency (EIT) stems from a quantum system, where an opaque atomic medium appears the narrow transparent state within a wide absorption area. This phenomenon can be achieved by quantum interference of pumping light and detecting light at different energy levels of transitions. In the generation process of EIT effect, in addition to transparent state, the atomic medium is usually accompanied with a strong dispersion effect, which will bright about a significant reduction of light velocity, thus realizing many important applications, such as slow light propagations. Although the EIT effect has many important applications, its application scenarios are greatly limited due to the fact that EIT realization usually requires specific and complicated conditions, such as refrigeration temperature, high intensity laser, etc. Recently, the analogue of EIT effect in metamaterial has attracted increasing attentions due to its advantages such as controllable room temperature and large operating bandwidth. Metamaterial analogue of EIT effect has become a new research focus. In this article, we review current research progresses on EIT metamaterials. Firstly, we describe the theoretical models for analyzing EIT metamaterials, including the mechanical oscillator model and the equivalent circuit model. Then, we describe the simulations, designs and experiments of passive EIT metamaterials with fixed structures and active EIT metamaterials with tunable elements. Furthermore, the applications of EIT metamaterials in the areas of slow lights, sensings, absorptions and other fields are also reviewed. Finally, the possible directions and key issues of future EIT metamaterial researches are prospected.

Funder

National Natural Science Foundation of China

Science Foundation Project of Heilongjiang Province of China

Fundamental Research Funds of Heilongjiang Provincial Universities of China

Postdoctoral Research Fund Project of Heilongjiang Province of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3