A comparative study on the characteristics of nanosecond laser ablation zinc and acrylonitrile butadiene styrene targets

Author:

Xu Yongfeng,Yang LiangORCID,Zhou Dongjian,Li Qingwei,Shi Wenbo,Jin Yuqi

Abstract

Abstract In this study, the influence of laser energy and pressure on propulsion performance of zinc and acrylonitrile butadiene styrene (ABS) is investigated by impulse measurement, fast exposure images, spectral diagnostics and target ablation. A Q-switched Nd:YAG laser with the wavelength of 1064 nm and pulse width of 6 ns is employed. The impulse and coupling coefficient generated by laser ablation ABS are greater than that of Zn, and they exhibit a similar variation trend with pressure. However, at higher pressure levels, the change in impulse versus laser energy is not completely coincident between Zn and ABS samples. The target property plays a significant role in the generation and propagation of plume related to the plasma parameters such as electron density and temperature. The temporal evolution images indicate that the plasma plume of laser-induced Zn presents a faster decay in comparison with that of ABS, which is ascribed to the fact that the gas temperature of ABS is higher than the electron temperature of Zn plasma in the local thermodynamical equilibrium. Also, the electron density is lower for Zn due to the rapid heat diffusion and higher ablation threshold of metal. It is found that the surface absorption is dominant for metal because the ablated crater of Zn performs larger diameter and shallower depth. On the contrary, the shrinkage in diameter but enhancement in depth of crater is observed from ABS surface, and the ablation mass is larger, suggesting the obvious volume absorption for polymer. The results reveal that the target property can engender an important effect on the energy conversion between laser, target and plasma.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3