Study of vacuum arc plasma transport characteristics during the DC interrupting process

Author:

Huang XiaolongORCID,Sun Tao,Wu Yuezheng,Yang Shangyu,Zhao Lihua,Ning Wenjun,Wang LijunORCID

Abstract

Abstract The mechanical DC vacuum circuit breaker based on forced-over-zero technology will inevitably generate vacuum arc during the actual interrupting process. Since the current drop frequency is usually very high, the vacuum arc usually exhibits obvious transient characteristics, and the excessive transient characteristics may even become a key factor limiting the interruption capacity. In order to improve the mechanical DC vacuum circuit breaker arc interrupting capability, this paper establishes a vacuum arc transient magneto-hydrodynamic simulation model in the DC interrupting process and studies the plasma transport characteristics of the vacuum arc under different DC interrupting conditions. The results show that the ion pressure, ion density and ion temperature decrease with decreasing arc current, while the ion velocity gradually increases during the DC interrupting process. The increase in breaking current and current drop frequency will increase the ion density in the arc column at the moment of current crossing zero, resulting in more difficult vacuum arc interrupting. The results of the study can provide an important theoretical basis for a deeper understanding of the vacuum arc transient process in the DC interrupting process and improve the DC vacuum circuit breaker arc interruption capability.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3