Metamaterial as perfect absorber for high sensitivity refractive index based biosensing applications at infrared frequencies

Author:

Mostufa ShahriarORCID,Yari ParsaORCID,Rezaei BaharehORCID,Xu KanglinORCID,Sun JiajiaORCID,Shi ZongqianORCID,Wu KaiORCID

Abstract

Abstract In this paper, we introduce a novel design of a metamaterial unit cell absorber, which is based on a metal/insulator/metal sandwich structure. The design is subjected to comprehensive finite element method computational analysis to ensure accurate and reliable results. The proposed metamaterial sandwich structure demonstrates exceptional absorption performance, achieving a nearly perfect absorption rate of 99.996% at the resonance infrared frequency of 39.8 THz. To provide a detailed theoretical explanation of nearly perfect absorption, we employ the effective medium theory, impedance matching, and field distribution analysis. Additionally, we have optimized the structural parameters of the sensor to maximize its absorption peak. This includes optimizing the thickness of the gold (Au) layer (from 0.03 to 0.28 μm), the distance between the L shape corners (from 0.60 to 0.90 μm), and the thickness of SiC dielectric spacer (from 0.20 to 0.45 μm). Furthermore, we showcase the remarkable sensitivity of the proposed metamaterial unit cell in detecting subtle changes in the refractive index through the implementation of a sensing medium setup in our model. Remarkably, we achieve a frequency shift sensitivity of 3.74 THz/RIU, along with a quality factor of 10.33, for a wide range of refractive indices (1.0–2.0). Moreover, for cancer detection, we attain a sensitivity of 3.5 THz/RIU. These findings highlight the exceptional performance of our approach in accurately detecting changes in refractive index, making it a promising candidate for various sensing applications. The novelty of our work lies in the design of a metamaterial unit cell structure. This configuration exhibits several noteworthy features, including wide incident angle ( θ ) coverage up to 60°, polarization insensitivity, exceptional frequency shift sensitivity, high absorption peaks across a wide range of refractive indices, and the ability to distinguish cancer cells from healthy ones.

Funder

Texas Tech University

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3