Review of lead-free Bi-based dielectric ceramics for energy-storage applications

Author:

Li Lisong,Fan Pengyuan,Wang Mengqi,Takesue NaohisaORCID,Salamon David,Vtyurin Alexander N,Zhang Yangjun,Tan Hua,Nan BoORCID,Lu Ya,Liu LaijunORCID,Zhang HaiboORCID

Abstract

Abstract Dielectric energy-storage ceramics have the advantages of high power density and fast charge and discharge rates, and are considered to be excellent candidate materials for pulsed power-storage capacitors. At present, the application of dielectric energy-storage ceramics is hindered by their low energy density and the fact that most of them contain elemental lead. Therefore, lead-free dielectric energy-storage ceramics with high energy storage density have become a research hot spot. In this paper, we first present the requirements that dielectric energy-storage capacitors impose on the properties of ceramic materials. We then review our previous research work combined with research progress into bismuth (Bi)-based lead-free energy-storage ceramics including Bi0.5Na0.5TiO3 (BNT), BiFeO3, and Bi0.2Sr0.7TiO3, in which the composition design ideas and related energy-storage characteristics of BNT-based lead-free energy-storage ceramics are emphasized. At the same time, we highlight the problems faced by Bi-based lead-free energy-storage ceramics and some strategies for addressing them. Finally, we examine the future prospects of research into Bi-based lead-free energy-storage ceramics.

Funder

Natural Science Foundation of Guangxi

DongGuan Innovative Research Team Program

the Open Fund of Guangxi Key Laboratory of Information Materials

China Postdoctoral Science Foundation

National Natural Science Foundation of China

High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3