Origin of the ultrahigh field-induced strain in the Gd-doped 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 ternary ceramic system

Author:

Gözüaçık Namık KemalORCID,Alkoy SedatORCID

Abstract

Abstract This study focused on analyzing the ferroelectric, piezoelectric, and dielectric properties of lead-free Bi0.487Na0.427K0.06Ba0.026TiO3 (0.854BNT-0.12BKT-0.026BT) ternary ceramic system by systematically doping 0.001, 0.01, 0.1, 0.5, and 1.0 mol% Gd2O3. The specific composition that was investigated is located at the tetragonal side of the rhombohedral-tetragonal morphotropic phase boundary (MPB) region. Undoped and Gd-doped BNT-BKT-BT ceramics were produced by the conventional solid-state reaction method. Ferroelectric, piezoelectric, and dielectric properties of ceramics were analyzed by carrying out electrical measurements from sintered samples. An ultrahigh field-induced unipolar strain of 0.52% at 65 kV cm−1, with a converse piezoelectric coefficient d33* of up to 795 pm V−1, was achieved with 0.5 mol% Gd doping. This was attributed to the Gd dopant disrupting the normal ferroelectric order and leading to the formation of a nonpolar relaxor phase. The field-induced transition from the nonpolar relaxor phase to the normal ferroelectric phase resulted in relatively large field-induced strain values in the 0.5 mol% Gd-doped ceramics. These results suggest that Gd-doped BNT-BKT-BT ceramics hold promise for digital actuator applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3