Plasma-enhanced atomic layer deposition of nickel and nickel oxide on silicon for photoelectrochemical applications

Author:

O’Donnell SORCID,O’Neill D,Shiel K,Snelgrove MORCID,Jose F,McFeely C,O’Connor RORCID

Abstract

Abstract The production of hydrogen fuel through sunlight-driven water splitting has the potential to harness and store large quantities of solar energy in a clean and scalable chemical state, suitable for later use in a range of energy applications. Silicon (Si) possesses many of the required properties to be used effectively as a photoelectrochemical (PEC) water-splitting photoanode. However, its sensitivity to corrosion during the oxygen evolution reaction limits its performance in photoanode applications, thus requiring additional overlayer materials to protect the underlying Si substrate. Nickel oxide (NiO) is one material that acts as an effective protective layer, being transparent, suitably conductive and stable. In this work, we present NiO deposition via state-of-the-art atomic layer deposition and photoemission studies to grow and characterize NiO and Ni–metal protective films. Early-stage nucleation of deposited thin films is illustrated along with the effects of post-deposition annealing and argon milling on depth profile information. Previous reports on the effects of slow argon milling are explored and counter arguments are proposed. Protective films are subjected to PEC testing, which shows enhancement of stability and photocurrent output as a result of the deposited films and plasma annealing on these thin films.

Funder

Sustainable Energy Authority of Ireland

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3