Electrical properties of inhomogeneous tungsten carbide Schottky barrier on 4H-SiC

Author:

Vivona MORCID,Greco GORCID,Bellocchi GORCID,Zumbo L,Di Franco S,Saggio M,Rascunà S,Roccaforte FORCID

Abstract

Abstract In this paper, the electrical behavior of tungsten carbide (WC) Schottky barrier on 4H-SiC was investigated. First, a statistical current-voltage (I–V) analysis in forward bias, performed on a set of equivalent diodes, showed a symmetric Gaussian-like distribution of the barrier heights after annealing at 700 °C, where a low Schottky barrier height (ΦB = 1.05 eV) and an ideality factor n = 1.06 were measured. The low value of the barrier height makes such a WC contact an interesting candidate to reduce the conduction losses in 4H-SiC Schottky diodes. A deeper characterization has been carried out, by monitoring the temperature dependence of the I–V characteristics and the behavior of the relevant parameters ΦB and n. The increase of the barrier height and decrease of the ideality factor with increasing temperature indicated a lateral inhomogeneity of the WC/4H-SiC Schottky contact, which was described by invoking Tung’s model. Interestingly, the temperature dependence of the leakage current under reverse bias could be described by considering in the thermionic field emission model the temperature dependent barrier height related to the inhomogeneity. These results can be useful to predict the behavior of WC/4H-SiC Schottky diodes under operative conditions.

Funder

Electronic Components and Systems for European Leadership

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3