On the ignition kernel formation and propagation: an experimental and modeling approach

Author:

Shaffer James,Luna Steven,Wang Weiye,Egolfopoulos Fokion N,Askari OmidORCID

Abstract

Abstract The next generation of advanced combustion devices is being developed to operate under ultra-high-pressure conditions. However, under such extreme conditions, flame tends to become unstable and measurement of fundamental properties such as the laminar flame speed becomes challenging. One potential method to resolve this issue is measuring the ignition-affected region during spherically expanding flame experiments. The flame in this region is more resistant to perturbations and remains smooth due to the high stretch rates (i.e. small radii). Stable flame propagation allows for improved flame measurement, however, the experimentally observed kernel propagation is a function of both inflammation and ignition plasma. Therefore, the goal of the present study is to better understand the plasma formation and propagation during the ignition process, which would allow for reliable laminar flame speed measurements. To accomplish this goal, thermal plasma operating at high pressures is studied with emphasis on the spark energy effects on the formation of the ignition kernel. The thermal effect of the plasma is experimentally observed using a high-speed Schlieren imaging system. The energy dissipated within the plasma is measured with the use of voltage and current probes with a measurement of plasma sheath voltage drop as an input to numerical modeling. The measured kernel propagation rate is used to assess the accuracy of the model. The experiments and modeling are conducted in dry air at 1, 3, and 5 atm as well as in CH4-N2 mixtures at 1 atm, and kernel radius, temperature, and mass are reported. The voltage-drop (as a non-thermal loss) is measured to be approximately 330 ± 5 V (dry air at 1 atm) for glow plasma with a large dependency on pressure, gas composition, electrode surface quality, electrode geometry, electrode shape, and current density. The same loss within the arc plasma is measured to be 15 ± 5 V, however the arc phase loss which agrees with arc propagation is significantly higher (∼45 V) which suggest additional unaccounted for phenomena occurring during the arc phase. With these losses, the modeling results are shown to predict the final kernel radius within 10%–20% of the observed kernel size. The difference found between the modeling and experimental results is determined to be a result of assuming that the primary loss mechanism (voltage drop across sheath formation) remains constant for the duration of glow discharge. The discrepancy for arc discharge is discussed with several potential sources, however, additional studies are required to better understand how the arc formation affects the kernel propagation.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3