CIGS photovoltaics: reviewing an evolving paradigm

Author:

Stanbery Billy JORCID,Abou-Ras Daniel,Yamada Akira,Mansfield Lorelle

Abstract

Abstract Copper indium selenide chalcopyrite-structure alloys with gallium (CIGS) are unique among the highest performing photovoltaic (PV) semiconductor technologies. They are structurally disordered, nonstoichiometric materials that have been engineered to achieve remarkably low bulk nonradiative recombination levels. Nevertheless, their performance can be further improved. This review adopts a fundamental thermodynamic perspective to comparatively assess the root causes of present limitations on CIGS PV performance. The topics of selectivity and passivation of contacts to CIGS and its multinary alloys are covered, highlighting pathways to maximizing the electrochemical potential between those contacts under illumination. An overview of absorber growth methods and resulting properties is also provided. We recommend that CIGS researchers consider strategies that have been successfully implemented in the more mature wafer-based GaAs and Si PV device technologies, based on the paradigm of an idealized PV device design using an isotropic absorber with minimal nonradiative recombination, maximal light trapping, and both electron-selective and hole-selective passivated contacts. We foresee that CIGS technology will reach the 25% efficiency level within the next few years through enhanced collection and reduced recombination. To significantly impact power-generation applications, cost-effective, manufacturable solutions are also essential.

Funder

Office of Energy Efficiency and Renewable Energy

Bundesministerium für Wirtschaft und Energie

New Energy and Industrial Technology Development Organization

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3